
January 14, 2003

The Ecology of Open Source Software Development

Kieran Healy
University of Arizona
kjhealy@arizona.edu

Alan Schussman
University of Arizona
schussat@email.arizona.edu

Open Source Software (oss) is an innovative method of developing software applications
that has been very successful over the past eight to ten years. A number of theories have emerged
to explain its success, mainly from economics and law. We analyze a very large sample of oss
projects and find striking patterns in the overall structure of the development community. The
distribution of projects on a range of activity measures is spectacularly skewed, with only a rel-
atively tiny number of projects showing evidence of the strong collaborative activity which is
supposed to characterize oss. Our findings are consistent with prior, smaller-scale empirical re-
search. We argue that these findings pose problems for the dominant accounts of oss. We suggest
that the gulf between active and inactive projects may be explained by social-structural features
of the community which have received little attention in the existing literature. We suggest some
hypotheses that might better predict the observed ecology of projects.

Besides the Internet itself, the most distinctive and widespread development in
information technology since the mid-1990s has not been a particular software appli-
cation, but rather a way of writing and distributing software in general. The rapid
growth of the Open Source Software (oss) movement has astonished most observers.
From modest beginnings, there are now thousands of active oss projects, ranging in
scope from simple calculators to entire operating systems. Open Source Software is
given away for free by the developers who write it, both in the sense that it is provided

1

kjhealy@arizona.edu
schussat@email.arizona.edu


2

at a nominal charge and that it is licensed to users without the legal restrictions typical
of commercial software.1

Although oss development is an important phenomenon closely linked to the
growth of the Internet, we do not know much about how it works in practice, who is
involved or why they participate. From a theoretical point of view, the oss approach
does not fit with standardmodels of software development (Sandred 2001; Vixie 1999)
or formal organization more generally (Neff and Stark 2002). It is a hybrid: part so-
cial movement, with idealistic principles and goals; part formal organization, with an
intensive schedule and innovative products; part volunteer network, with time and
energy to donate.

In this paper, we present data from a large sample of oss projects as a first step
towards understanding the social organization of oss development. We argue that, as
a collaborative project of great size and scope, rooted in networks of volunteers and
embedding innovative organizations and newmarkets within itself, oss development
is of strong interest to economic sociologists. We find that the social structure of oss
development, asmeasured by the size, composition and activity pattern of projects, dif-
fers significantly both from typical characterizations by movement “evangelists” and
from broad claims by theorists of oss.

We begin by providing some basic background about oss and then discuss the
emerging theoretical literature. We then present some hypotheses from this litera-
ture and test them against a large sample of oss projects. A central finding is that
the oss community is spectacularly stratified on a variety of activity and participa-
tion measures. The observed structure challenges both the common image of the oss
community as a relatively “flat” network of interacting peers (Raymond 2001) and to
an emerging theory of the community as an efficient router of human capital informa-
tion (Benkler 2002). It is consistent, however, with some recent empirical data on oss
project development (Mockus, Fielding, and Herbsleb 2000) and on the oss commu-
nity (Krishnamurthy 2002). In our discussion, we emphasize the strikingly consistent
patterns found in the data, discuss their implications for existing theory, and suggest
a number of hypotheses about the social structure of the oss community that might
explain the observed patterns.

existing theory and research
Traditional software development follows a familiar pattern. A company writes a pro-
gram and then tries to sell it. The program’s “source code” is a trade secret, just like

1For an accessible narrative overview of the oss movement, including samples of the various soft-
ware licenses, see Wershler-Henry 2002. For some of the foundational texts of the movement, and a
sense of its internal diversity, see the essays in DiBona, Ockman, and Stone 1999.



3

an auto manufacturer’s blueprints for its cars. By contrast — as the name suggests —
the source code in an oss project is available to anyone who wants it. The software is
developed and maintained by a community of volunteers. Essentially, anyone is free
to take the results of this work and modify it, extend its capabilities, or incorporate it
into their own projects (usually, but not always, on condition that they keep their own
contributions “open” in a similar way).2 It is a counterintuitive way to act in the highly
competitive world of computing and information technology. And yet, although ca-
sual users are often unaware of it, many essential features of the Internet — such as
sending email and serving web pages — are more often than not controlled by soft-
ware created through oss projects. Besides this “backstage” work, oss projects like
the gnu/Linux operating system and, more recently, Apple’s use of oss components
in their operating system have become increasingly prominent.

Early surveys of the new information technologies were largely speculative and
tended to focus on the transformative possibilities of new hardware (Dertouzos 1997;
Gilder 1990). More recent research has put the growth of the Internet in historical per-
spective (Abbate 2000; Chandler andCortada 2000) and shown how the new informa-
tion technologies are changing — and being shaped by — existing legal and political
institutions (Lessig 2001; Sunstein 2001). Sociologists are also examining the effect of
the Internet on social inequality, political participation and cultural life generally (for
a review see DiMaggio et al. 2001).

A smaller body of research focuses on the engine driving many of these changes
— the oss developers themselves and the distinctive organizational forms they have
created. Evangelists for the movement have written about how it ought to work (Di-
Bona, Ockman, and Stone 1999), and journalists have described the movement’s re-
cent history and main figures (Moody 2001). But there are far fewer studies of the
organizational structure of oss, such as the characteristics of projects, their practical
administration, the relationship between developers and users, the location and back-
ground of the developers themselves, their reasons for participating in the community,
the benefits they gain from it, and so on.

2The precise conditions depend on the license the software is released under.There is debate within
the oss community about its appropriate form. The central innovation of the Free Software Founda-
tion’s canonical gnu General Public License (or gpl) is that it allows the licensee to make changes to
the source code and freely redistribute it only on the condition that the source code for the new version
is redistributed with any new version of the software. Programmers may freely use the work of others,
but must make their own changes available for use in the same way. Other licenses (the Berkeley bsd
license, for example) do not contain this restriction. See Sandred 2001 Ch. 3, Wershler-Henry 2002
Chs 2 and 4, Perens 1999 and Williams 2002 for further detail and different perspectives on the issues
at stake.



4

Theories of oss

The stylized image of oss development, most often found in popular accounts of the
phenomenon, is one of an egalitarian network of developers largely free of hierarchical
organization and centralized control. A widely-cited essay by Eric Raymond argues
explicitly that the virtues of the oss style of development come from its flat structure.
He contrasts

two fundamentally different development styles, the “cathedral”model
of most of the commercial world versus the “bazaar” model of the Linux
world... Linus Torvalds’s style of development — release early and often,
delegate everything you can, be open to the point of promiscuity— came
as a surprise. No quiet, reverent cathedral-building here — rather, the
Linux community seemed to resemble a great babbling bazaar of differ-
ing agendas and approaches . . .out of which a coherent and stable system
could seemingly emerge only by a succession of miracles . . . the Linux
world not only didn’t fly apart in confusion but seemed to go from strength
to strength at a speed barely imaginable to cathedral-builders (Raymond
1998).

Efforts by economists to “theorise the the bazaar,” as it were, break the problem
into two parts. First is the lack of hierarchy and the apparently chaotic nature of oss
development. From an economist’s point of view, it is not surprising that a distributed
anddisaggregated systemof innovation successfully outperforms a hierarchically-organized
alternative. Thus, Eric von Hippel argues that

Complete user-centric innovationdevelopment and consumption com-
munities canflourishwhen (1) at least someusers have sufficient incentive
to innovate, (2) at least some users have an incentive to voluntarily reveal
their innovations and the means to do so, and (3) diffusion of innova-
tions by users can compete with commercial production and distribution.
When only the first two conditions hold, a pattern of user innovation and
trial will occur, followed by commercial manufacture and distribution of
innovations that prove to be of general interest (Hippel, n.d.).

By “user-centric innovation” vonHippel means a community of users who tend to
tinker with and improve the products they use. Hobbyists often display this tendency
(vonHippel first noticed it happening amongst windsurfers who improved their gear)
and he argues that the oss community is a very large and disaggregated example of
this type.

A complementary account is presented in Benkler 2002. Benkler presents a trans-
actions costs analysis (Williamson1985; Coase 1988). The central virtue of the oss



5

model, he argues, is its “peer-to-peer” structure, which lowers transactions costs in
particular circumstances and provides a more efficient method of allocating human
capital inputs:

[T]he primary advantage of peer production is in acquiring and pro-
cessing information about human capital available to contribute to infor-
mation production projects . . . [P]eer production has a systematic advan-
tage over markets and firms in matching the best available human capi-
tal to the best available information inputs to create the most desired in-
formation products . . . [I]f peer production has a sufficient advantage in
terms of its capacity to process information about who the best person is
for a given information production job over firm andmarket basedmech-
anisms to outweigh the costs of coordination, then peer production will
outperform firms and markets (Benkler 2002).

Benkler does not say how to measure the benefits of information flow conferred
by commons-based peer production. Information is not conveyed via price signals, as
in markets, or via chains of command, as in firms. Instead, it “relies on decentralized
information gathering and exchange to reduce the uncertainty of participants, and has
particular advantages as an information process for identifying human creativity avail-
able to work on information and cultural resources in the pursuit of projects, and as an
allocation process for allocating that creative effort” (7). The “pervasively networked
environment” of the oss community allows for better information flow about who
should take on particular projects. This analysis suggests a community social struc-
ture of a particular kind. In contrast to atomized agents relying on price signals to
make decisions, community participants should be well-connected (“pervasively net-
worked”) and information should flow well between them. The result, according to
Benkler, will be a process “matching human capital to information inputs to produce
new information goods” (73).

The second problem is a little more difficult to reconcile with a purely economic
view. Why is there so much voluntary participation? Why are participants willing to
develop and distribute their innovations for free? In a careful economic analysis of
developer motivations, Lerner and Tirole 2000 argue that, despite initial appearances,
several incentives make it rational to volunteer. Chief amongst these are the practical
benefits to users of having software that works properly, the increase in reputation
that comes from being associated with a successful project, and the potential for oss
projects to lead to further commercial opportunities. Lerner and Tirole argue that
“the reputational benefits that accrue from successful contributions to open source
projects appear to have real effects on the developers,” that “there also appear be quite
tangible — if delayed — rewards” to participation, that “many of the skilled Apache



6

programmers have benefited materially from their association with the organization”
and that there is “substantial evidence that open source work may be a stepping stone
to securing venture capital” (Lerner and Tirole 2002, 217-18).

This perspective on oss development is illuminating but incomplete. Themotives
adduced by Lerner andTirole are plausible (and supported by evidence fromanumber
of important oss projects), but cannot fully account for the movement’s organization.
In particular, the role of the project leader is difficult to explain in economistic terms:

Another important determinant of project success appears to be the
nature of its leadership . . .The key to a successful leadership is the pro-
grammers’ trust in the leadership: that is, theymust believe that the leader’s
objectives are sufficiently congruent with theirs and not polluted by ego-
driven, commerical or political biases. In the end, the leader’s recommen-
dations are only meant to convey her information to the community of
participants.The recommendations receive support from the community
only if the leadership’s goals are believed to be aligned with the program-
mers’ interests (221-22).

The difficulties of the argument are apparent. Programmers are supposed to con-
tribute to projects for self-interested reasons, but leaders can only be successful if they
are “not polluted by ego-driven, commercial or political biases”. Lerner and Tirole
attempt to parse the project leader’s authority as simply a matter of conveying infor-
mation, and her success as simply dependent on congruence with the interests of her
followers. But, from a sociological point of view, this is a thin characterization of the
role of the charismatic leader. Indeed, they note that “leaders of open source move-
ments may initially not have been motivated by ego gratification and career concerns”
(213), and that “Despite the substantial status and career-concerns benefits of being a
leader of an imporant open source project, it would seem that most should not resist
the large monetary gains from taking a promising technology private. We can only
conjecture why this is not the case” (215).

These gaps in the economic account of community participation suggest there
is more than “simple economics” at work here. In particular, the key role of project
leaders in mobilizing successful projects seems under-theorized. Empirical studies of
the oss community’s social structure raise further questions about both Lerner et al.’s
and Benkler’s view of oss.



7

Existing empirical data

What do we know about oss community structure? We focus on two studies in partic-
ular.3 Mockus, Fielding, and Herbsleb 2000 is a case study of one of the most success-
ful open source projects, the Apache server.4 Taking a software-engineering perspec-
tive, they focused on the internal process used to develop Apache, asking how many
people wrote code, reported problems and repaired defects. A key finding was that
the Apache project was driven by about 15 core developers, who contributed about
85-90% of the code, surrounded by a larger penumbra of participants. A group larger
than the core by about an order of magnitude helped fix defects, and a group larger by
an order of magnitude again helped report problems (271). The authors hypothesized
that this pattern would be common across successful oss projects.

In one of the few survey- rather than case-study based analyses of oss, Krishna-
murthy 2002 asked whether “the community-based model of product development
holds as a general descriptor of the average oss product.” Examining 100 mature
projects from the Sourceforge database (see below for further discussion of this data
source, also used in this paper), he found that “the vastmajority ofmatureoss projects
are developed by a small number of individuals. In fact, the median number of devel-
opers in his sample was one. He also found that few oss projects generated much
discussion. “On average, each oss project had 2 forums and 2 mailing lists for dis-
cussion. Ten of the 100 products had neither an online forum nor a mailing list . . . 33
out of 100 projects had 0 messages! At the same time, a few products led to great dis-
cussion with the highest number of messages over a life time of a product standing at
4,952” (Krishnamurthy 2002).

These findings suggest that a large-scale survey of oss projects should find a clear
structure. On the basis of the Apache case study, we expect that within projects, de-
velopment activity will be strongly skewed across coding, problem-correction and
problem-reporting tasks in, the manner described byMockus, Fielding, andHerbsleb
(2000). On the basis of Krishnamurthy’s survey, we expect that between projects, de-
velopment activity will be strongly skewed, with a small number of projects attracting
most activity.

3Other important efforts in this direction include Lakhani and Hippel, n.d., Lancashire 2002 and
Schweik and Semenov 2003.

4Apache is a piece of software that serves up web pages. Websites are powered by web servers that
respond to requests from users to see a particular page on a site. More than half the world’s websites are
powered by the Apache server.



8

data and methods
One reason for the lack of research in this area is that the ossmovement is large, infor-
mally structured, and geographically dispersed. It is therefore difficult to collect good
data. We avoid this problem by using a copy of the Sourceforge project database in our
analysis. Sourceforge (www.sourceforge.net) is the largest repository of Open Source
projects available on the Internet. Sourceforge provides hosting services for project de-
velopers, allowing them to manage their source code, communicate with one another
(via email, mailing lists and discussion forums) and make their work available for
download. Although the developers themselves are located all over the world, Source-
forge’s servers are where the day-to-day interaction and innovation actually happens
for a very large sample of oss projects.

Sourceforge’s parent company, osdn, provided the lead author with a summary
snapshot of its project database in August of 2002. The data contain records for the
46,356 projects then hosted by Sourceforge. Fields include basic (non-confidential)
information on each project and various measures of development activity. These
measures include data on the number of developers, downloads, cvs5 checkouts and
commits, number of mailing lists, number of posts to mailing lists, number of unique
message authors, number of site views, number of support requests open and closed,
and number of bug reports opened and closed. These variables measure different as-
pects of a project’s vitality ranging from level of general interest (site views, downloads)
to intensity of development (number of developers, cvs code commits), as well as in-
termediate activity (bug reports, support requests).

Sourceforge does not host all oss projects by anymeans. Several major projects—
amongst others, the Linux Kernel, the Apache server, the gnome and kde desktop
environments, and the XFree86 implementation of the X-Window system are all ma-
jor oss projects with their own websites, project-management groups and underlying
organizational apparatus (usually some form of non-profit organization). In addition,
many of the original gnu software projects are hosted by the Free Software Foun-
dation’s Savannah server rather than by Sourceforge. Nevertheless, Sourceforge is a
valuable resource for researchers. It is by far the largest collection of oss projects and
has grown rapidly since its foundation in 1999, as can be seen from Figure 1.

5Concurrent Versioning System, or cvs, is software that allows multiple developers to work on a
project over time. Developers “check out” portions of the source code in order to make modifications
to it. Changes are later “committed” to the main development tree, which holds the canonical version
of the code. The cvs application keeps track of what code has been checked out, and by whom, and
allows project managers to reconcile code changes made by different developers into a stable release of
the source code. Data on cvs checkouts and commits is therefore a measure of a project’s development
activity.

www.sourceforge.net


9

M
on

th

New Projects

20
00

.0
20

00
.5

20
01

.0
20

01
.5

20
02

.0

500100015002000

N
ew

 P
ro

je
ct

s 
p

er
 M

o
n

th

0
5

10
15

20
25

1020304050

M
on

th

% Change from previous month

P
er

ce
n

t 
N

ew
 P

ro
je

ct
s 

S
in

ce
 P

re
vi

o
u

s 
M

o
n

th
 (

ex
cl

u
d

es
 m

o
n

th
s 

1 
&

 2
)

Figure 1: New Projects on Sourceforge, Nov. 1999–Aug 2002: absolute (top) and relative
(bottom) growth.



10

results
We examined six measures of project activity. Detailed descriptive summaries of each
measure are provided in Table 1.6 It shows the valid N, the number of missing values
and the number of unique values for each variable. Values at selected intervals between
the 5th and 95th percentiles are shown beneath a small histogram. Each variable’s five
lowest and five highest values are also shown.

Table 1: Summary of Project Activity Measures

Developers

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
46356 0 43 1.688 1 1 1 1 2 3 5

lowest : 1 2 3 4 5, highest: 46 47 55 65 80

Downloads

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
46356 0 4380 2289 0 0 0 0 48 872 3116

lowest : 0 1 2 3 4
highest: 1698729 1723212 3330871 4598807 7703001

Site Views

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
46356 0 5726 1915 7 12 31 140 562 2084 4903

lowest : 0 1 2 3 4
highest: 640248 762994 821937 879960 5124577

Msg Uniq Auth

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
46356 0 70 1.237 0 0 1 1 1 2 3

lowest : 0 1 2 3 4, highest: 132 149 183 257 344

CVS Commits

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
46356 0 1649 88.89 0.0 0.0 0.0 0.0 1.0 94.0 328.2

lowest : 0 1 2 3 4
highest: 30111 31058 39669 68320 78959

6This table was produced using the describe function from Frank Harrell’s Hmisc library for R (Har-
rell 2001; Ihaka and Gentleman 1996).



11

As is clear from these descriptive statistics, activity across the whole range of
oss projects is spectacularly skewed, beyond even the expectations raised by Krish-
namurthy’s study. The median number of developers is one. The 95th percentile is 5.
Relative to the whole field, only a tiny number of projects have more than a handful
of developers. The median number of cvs commits is zero. At the 75th percentile it
is 1 and at the 90th percentile it is less than 100. This indicates that there is little or
no programming activity taking place on more than half of the projects. Examining
the number of message authors across all forums shows that only projects at the 90th
percentile and above have more than two contributing message writers.

To better grasp the structure of the data, it is convenient to represent it graphically.
Phenomena with highly skewed distributions often follow “power-law distributions”
— roughly, the relationship between the frequency of an event and its size appears lin-
ear on a log-log scale. Zipf ’s law, a subspecies of power-laws, says that the size (y) of
the r’th largest occurrence of an event will be inversely proportional to its rank-order:
y ≈ r−b, with b ≈ 1 (Zipf 1949).7 Distributions of this sort are very common across
a wide range of natural phenomena — the frequency of earthquakes is a stock exam-
ple, with small quakes being very common compared to the few large ones. For social
phenomena, power laws have been observed for city size (Krugman 1996), formal orga-
nizations such as the military and hospitals (Mayhew and Rushing 1973; Mayhew and
James 1972), and — relevant in this context — aspects of the flow of Internet traffic
(Huberman 2001).8 We find that the oss community displays a very similar structure.
The panels in Figure 2 show rank-ordered distributions for six activity measures. In
each case, projects are rank-ordered logarithmically on the x-axis, ordered from high-
est to lowest. Thus, for the ‘Developers’ panel, the first tick on the x-axis marks the
project at the 99.995th percentile, the second the project at the 99.99th percentile, and
so on. Given that each plot shows the data for more than 45,000 projects (rather than,
say, a fitted line), the regularity is striking. In each case, the activity is overwhelm-
ingly concentrated in the very upper end of the distribution. That this should be so
for the number of downloads is consistent with other work the topology of the In-
ternet (Faloutsos, Faloutsos, and Faloutsos 1999). But it also holds for the measures
whichmore closely index actual interaction, such as the number of developers and the
number of messages. Mayhew et al. 1995 found similar patterns in naturally occurring

7Power-law distributions express a relationship between size and frequency; Zipf ’s law relates rank
and frequency. The two are closely related. See Adamic for a helpful discussion of relationships of this
type.

8There is an under-explored link between the work of Mayhew and his associates and more recent
studies of the emergent structure of Internet communities (and other social phenomena with power-
law-type characteristics). Mayhew’s work is strongly oriented towards the deep problem of emergent
differentiation within social aggregates (Blau 1977, 1970), and thus might well provide a fruitful socio-
logical approach to these issues. Pursuing this link in more detail is a task for future research.



12

face-to-face groups.

Percentile

D
ev

el
op

er
s

99.995 99.95 99.5 95 50

1
2

5
10

20
50

Developers

Percentile

C
V

S
 C

om
m

its

99.995 99.95 99.5 95 50

1
10

10
0

10
00

10
00

0

CVS Commits

Percentile

U
ni

qu
e 

M
es

sa
ge

 A
ut

ho
rs

99.99 99.9 99 90 0

1
2

5
10

20
50

10
0

Unique Message Authors

Percentile

M
es

sa
ge

s

99.99 99.9 99 90 0

1
10

10
00

10
00

0

Messages

Percentile

S
ite

 V
ie

w
s

99.99 99.9 99 90 0

1
10

10
0

10
00

Site Views

Percentile

D
ow

nl
oa

ds

99.995 99.95 99.5 95 50

1
10

0
10

00
0

10
00

00
0

Downloads

Figure 2: Six measures of project activity.



13

It is interesting in and of itself that each of these measures of oss community
activity should be so consistent. Yet this is only a first step towards understanding
the development of the field. The mechanisms generating these consistent rank dis-
tributions may be quite different from one another. Different kinds of activities may
cluster in different sorts of projects, for instance, even though the shape of the over-
all distributions is the same. To illustrate this point, we compared the most active
projects as measured by number of downloads (Table 2) with the most active projects
as measured by number of cvs commits (Table 3). The most downloaded projects
are mainly end-user applications. The most heavily developed projects are mainly “be-
hind the scenes” system-level applications, programming environments, or utilities
providing basic functionality to an Operating System.

In summary, we found power-law type distributions for all activity measures in
our dataset. In each case, a tiny number of projects dominate an activity-type when
measured by volume. Different projects (and different kinds of project) dominate dif-
ferent measures. Measures of user interest in a project — such as site views and down-
loads— are not closely related to measures of developer activity on a project. The oss
community presents different faces to different audiences. Most users will download
a similar set of applications (the most popular ones), but most project developers will
never see a user looking to download their software. Many users may contribute bug
reports or feature requests, but the vast majority of projects do not receive them.

discussion
These preliminary findings raise questions about the scope and accuracy of existing
theories of oss development. In particular, the highly stratified structure of project de-
velopment suggests that broad generalizations about the “oss approach” or the “oss
community” or “oss developers” may bemuch too broad. Similarly, arguments about
what makes oss successful may need tempering given data on the characteristics of
a typical project. So, for instance, Raymond’s image of the bazaar does not capture
the fact that the typical project has one developer, no discussion or bug reports, and is
not downloaded by anyone. “Linus’s Law,” coined by Eric Raymond, states that “Given
enough eyeballs, all bugs are shallow.”9 It is hard to see how it can apply to most oss
projects in our dataset, as the only eyeballs looking at the code belong to the lone de-
veloper. Similarly, the transactions costs model presented by Benkler argues that the
flow of information in a pervasively networked environment tends to allocate the best
human capital to the job at hand. There is little evidence of this process at work in the

9An amazing three metaphors packed into seven words.



14

Table 2: Top Ten Most Downloaded Projects

Name Type of Application
cdex Audio
VirtualDub Video processing
zsnes Game emulator)
Back Orifice 2000 System/network admin
Mysql Database
Dev-C++ Development
afpl Ghostscript Print/typesetting
MyNapster File sharing
Tux Racer Game
Gnucleus File sharing

present sample of oss projects, if only because there simply is so little communication
registered on the vast majority of projects.10

What can we make of this gap between theory and data? A natural response is to
argue that what is at issue here is the appropriate definition of the oss community or
the oss field of projects. On this view, many of the projects hosted by Sourceforge
have fallen dead-born from the pc. They are unlikely to develop beyond a vague plan
for development, a general invitation to help out, and a version 0.001a alpha release (if
even that). So perhaps we should exclude them from the pool of projects we consider
when we talk about oss. An argument in favor of this view is that the Sourceforge
data has a disproportionate number of projects that are likely to fail or have already
failed. If we look instead to projects that have succeeded— the standard cases studies
like Apache, or the Linux Kernel and so on— then we see the true ossmodel at work.

A difficulty with this argument is that it simply restates the problem by redefining
the scope of the term “oss community.” In addition, it contradicts the rhetoric that
evangelists for oss use and theorists echo. Why shouldn’t the thousands of amateur
developers count as part of the community? Isn’t that what is supposed to characterize
the phenomenon in the first place?

A better approach, we argue, is to see the highly stratified nature of oss as an
opportunity for advancing theory. It seems clear that for every successful oss project
there are thousands of unsuccessful ones.This surely raises important questions about
the alleged benefits of the approach. It obviously does notmean oss cannot work (any
more than the failure of regular businesses means that capitalism cannot work), but it

10We do not discuss a third strong claim often made for the oss model, namely that it produces
innovative software better than standard approaches. There is not a great deal of evidence for this claim
in our data, but this is a complex issue that needs separate treatment at greater length.



15

doesmean that the scope conditions for a successful project need to be better specified.
Why, for example, does Apache succeed when so many others fail? It cannot simply
be because it’s an oss project, for so are the failures. There must be something else at
work.

What might that be? We do not pretend to offer a full explanation here. But we
do want to suggest some possible approaches, grounded in sociological approaches
to organization and mobilization. Three aspects of oss development seem particu-
larly under-theorized. First, it is clear from the case-study literature that successful
oss projects aremost often staffed (at their cores) by professional software developers.
This might seem like a banal observation, but we should bear in mind how this differs
from the populist image of teenage hackers in their parents’ basements beavering away
on new technologies. Despite the public image of hackers, the projects that matter are
(more often than not) run by professionals and not amateurs. We need more research
into how this group regulates itself, and what its values are. A hypothesis for future
research is that the more successful an oss project, the more professional its core contrib-
utors will be, as measured by length of practical experience, formal qualifications or
both.

Second, we suggest that the data presented here, corroborated again by case stud-
ies, implies that the role of project leaders in mobilizing development is crucial. Effec-
tive project leadership seems to us one of the most likely candidates for differentiating
successful projects from unsuccessful ones. The voluntary nature of participation in
an oss project makes the role of the leader vitally important. The preconditions for
successful mobilization may well be best understood not via economic approaches,
we argue, but via concepts borrowed from the literature on social movement organi-
zation and political action. The theoretical literature on oss at present is dominated
by ideas derived from Economics, Law andManagement. These disciplines obviously
have important contributions to make, but may tend to downplay or miss key aspects
of the oss phenomenon. As we said at the beginning, oss is a hybrid — part eco-
nomic project, part network organization and part social movement. The two latter
aspects, and especially the last, seem the least well-understood. We suggest that suc-
cessful oss projects will tend to have core participants mobilized in a way similar to core
participants in successful social movement organizations.

Third, and last, we argue that the importance of hierarchical organization to suc-
cessful oss projects is systematically underplayed in the theoretical literature. We
suggest that successful oss projects will tend to have a strong hierarchical component,
at least in the ways they manage the relations between lead (and core) developers and
other contributors. This is not an original observation on our part, yet it is remarkably
absent frommost of the standard accounts of oss, which tend instead to focus on the
(allegedly) quasi-anarchic qualities of the development process. Jordan Hubbard, a
leading contributor to the Freebsd project, comments:



16

Table 3: Top Ten Projects by cvs Commits

Name Type of Application
Crystal Space 3D Engine Graphics engine
Open cascade Auto Config Development
Direct Rendering Infrastructure Graphics development
Squid http Proxy Developments Proxy server
gkernel Core os development
Linux Standard Base Core os development
LinuxSH Core os development
QuakeForge Game engine
phpGroupWare Web groupware
Python Programming language

Despite what some free-software advocates may erroneously claim
from time to time, centralized development models like the FreeBSD
Project’s are hardly obsolete or ineffective in the world of free software.
A careful examination of the success of reputedly anarchistic or “bazaar”
development models often reveals some fairly significant degrees of cen-
tralization that are still very much a part of their development process.11

There is a lot to be said for this argument. As several case-studies have noted, core
development on successful oss projects tends to be well organized. In some cases —
most conspicuously in the case of the Linux kernel — it is entirely hierarchical, with
lead developer LinusTorvalds decidingwhich patcheswill be accepted to new versions
of the kernel andwhichwill not.12 We suggest that, despite the canonical image of oss
development as a free-for-all bazaar, hierarchical organization is central to the success
of important projects. This hierarchy is not a formal organizational chart but rather
(we conjecture) a status-based pecking order which is known to project participants
and serves as away of policingmembers. FollowingArthur Stinchcombe’s observation
that contracts may have hierarchical elements (Stinchcombe 1985), we suggest that the
apparently open-form, flat networks of the oss community are inmany ways strongly
hierarchical. We further suggest that, contrary to the conventional wisdom, hierarchy
tends to emerge as a precondition of successful project management and hypothesize
that the closer a successful project is to the core of the oss community, themore hierarchy
will be found in its management style. Thus, for instance, the social organization of

11Quoted in Linux Magazine, April 2000. http://www.linux-mag.com/2000-04/opensource_evol_01.

html.
12This has created a significant amount of tension in the kernel hacker community. [REF]

http://www.linux-mag.com/2000-04/opensource_evol_01.html
http://www.linux-mag.com/2000-04/opensource_evol_01.html


17

kernel hackers will bemore hierarchical than that of developers of add-on applications
for the gnome or kde desktop environments, because the kernel is the essence of the
operating system, whereas additional text editors or desktop calculators are much less
important.

In sum, we have argued that the huge gap between successful and unsuccessful
(active and inactive) projects in our data is a real puzzle. We offer these hypotheses as
a way of focusing attention on some aspects of the oss community which we feel have
been neglected in current theory. We have consciously formulated them in a way that
focuses on aspects of oss organization— professionalism, clear leadership, hierarchy
— that are antithetical to the standard image of the community. More generally, we
have argued that researchers should attend more closely to the social structure of the
oss community. The process of oss development is embedded in particular struc-
tural and organizational contexts that theorists of oss have so far paid little attention
to. Investigating them offers a promising route for an original sociological perspective
on this exciting phenomenon.

references
Abbate, Janet. 2000. Inventing the Internet. Cambridge, MA: MIT Press.

Adamic, Lada A. Zipf, Power-laws, and Pareto— a ranking tutorial. Internet Ecologies
Area, Xerox Palo Alto Research Center, Palo Alto CA. http://ginger.hpl.hp.com/
shl/papers/ranking/ranking.html.

Benkler, Yochai. 2002. “Coase’s Penguin, or, Linux and the Nature of the Firm.” Yale
Law Journal, Forthcoming, Winter.

Blau, Peter M. 1970. “A FormalTheory of Differentiation in Organization.” American
Sociological Review 35:201–18.

. 1977. Inequality and Heterogeneity: A primitive theory of social structure.Glen-
coe, IL: Free Press.

Chandler, Alfred D., and JamesW. Cortada, eds. 2000.ANation Transformed by Infor-
mation. Cambridge, MA: Harvard University Press.

Coase, R.H. 1988.The Firm, the Market and the Law. Chicago: University of Chicago
Press.

Dertouzos, Michael. 1997. What Will Be: How the New World of Information Will
Change Our Lives. New York: Harper Business.

http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html
http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html


18

DiBona, Chris, Sam Ockman, and Mark Stone, eds. 1999. Open Sources: Voices from
the Open Source Revolution. New York: O’Reilly.

DiMaggio, Paul, Eszter Hargittai, W. Russell Neuman, and John P. Robinson. 2001.
“Social Implications of the Internet.” Annual Review of Sociology 27:307–336.

Faloutsos, Michalis, Petros Faloutsos, and Christos Faloutsos. 1999. “On power-law
relationships of the Internet topology.” In Proceedings of the conference on Ap-
plications, technologies, architectures, and protocols for computer communication,
251–262. Cambridge, Massachusetts, United States: ACM Press. doi:http://doi.
acm.org/10.1145/316188.316229.

Gilder, George. 1990.Microcosm:The Quantum Revolution in Economics and Technol-
ogy. New York: Simon / Schuster.

Harrell, Frank E. 2001. Regression Modeling Strategies. New York: Springer.

Hippel, Eric von. n.d. “Open Source Shows the Way - Innovation By and For Users
- No Manufacturer Required.” http : / / opensource . mit . edu / papers / evhippel -

osuserinnovation.pdf.

Huberman, Bernardo. 2001.The Laws of the Web. Cambridge, MA: MIT Press.

Ihaka, Ross, and Robert Gentleman. 1996. “R: A Language for Data Analysis and
Graphics.” Journal of Computational and Graphical Statistics 5 (3): 299–314.

Krishnamurthy, Sandeep. 2002. “Cave or Community? An Empirical Examination of
100 Mature Open Source Projects.” First Monday 7 (6). %5Curl%7Bhttp://firstmo
nday.org/issues/issue7_6/krishnamurthy/index.html%7D.

Krugman, Paul. 1996.The Self-Organizing Economy. New York: Blackwell.

Lakhani, Kareem, and Eric von Hippel. n.d. “HowOpen Source SoftwareWorks: Free
User to User Assistance.” Research Policy, Forthcoming.

Lancashire, David. 2002. Code, Culture and Cash:The Fading Altruism of Open Source
Development. http://www.firstmonday.org/issues/issue6_12/lancashire. http:
//www.firstmonday.org/issues/issue6_12/lancashire.

Lerner, Josh, and JeanTirole. 2000. “The Simple Economics ofOpen Source.”National
Bureau of Economic Research (NBER) Working Paper 7600.

. 2002. “Some Simple Economics of Open Source.” The Journal of Industrial
Economics L:197–234.

Lessig, Lawrence. 2001.The Future of Ideas:The Fate of the Commons in a Connected
World. New York: Random House.

http://dx.doi.org/http://doi.acm.org/10.1145/316188.316229
http://dx.doi.org/http://doi.acm.org/10.1145/316188.316229
http://opensource.mit.edu/papers/evhippel-osuserinnovation.pdf
http://opensource.mit.edu/papers/evhippel-osuserinnovation.pdf
%5Curl%7Bhttp://firstmonday.org/issues/issue7_6/krishnamurthy/index.html%7D
%5Curl%7Bhttp://firstmonday.org/issues/issue7_6/krishnamurthy/index.html%7D
http://www.firstmonday.org/issues/issue6_12/lancashire
http://www.firstmonday.org/issues/issue6_12/lancashire
http://www.firstmonday.org/issues/issue6_12/lancashire


19

Mayhew, Bruce H., andThomas F. James. 1972. “System Size and Structural Differenti-
ation inMilitaryOrganizations: Testing aHarmonic SeriesModel of theDivision
of Labor.” American Journal of Sociology 77:750–765.

Mayhew, BruceH., J. MillerMcPherson,Thomas Rotolo, and Lynn Smith-Lovin. 1995.
“Sex and Race Homogeneity in Naturally Occurring Groups.” Social Forces 74:15–
52.

Mayhew, BruceH., andWilliamA.Rushing. 1973. “Occupational Structure ofCommu-
nity General Hospitals:The Harmonic Series Model.” Social Forces 51:455–462.

Mockus, Audris, Roy T. Fielding, and James Herbsleb. 2000. “A case study of open
source software development: the Apache server.” In Proceedings of the 22nd in-
ternational conference on Software engineering, 263–272. Limerick, Ireland: ACM
Press. doi:http://doi.acm.org/10.1145/337180.337209.

Moody, Glyn. 2001. Rebel Code: Linux and the Open Source Revolution. New York:
Perseus.

Neff,Gena, andDavid Stark. 2002. “Permanently Beta: ResponsiveOrganization in the
Internet Era.” Center on Organizational Innovation Working Paper, Columbia
University, September.

Perens, Bruce. 1999. “The Open Source Definition.” In Open Sources: Voices from the
Open Source Revolution, edited by Chris DiBona, SamOckman, andMark Stone,
171–188. Sebastopol, CA: O’Reilly.

Raymond, Eric S. 1998. The Cathedral and the Bazaar. http://www.firstmonday.dk/
issues/issue3_3/raymond/.

. 2001.The Cathedral and the Bazaar. New York: O’Reilly.

Sandred, Jan. 2001.Managing Open Source Projects.Wiley.

Schweik, Charles M., and Andrei Semenov. 2003. The Institutional Design of Open
Source Programming: Implications for addressing complex public policy and man-
agement problems. http://www.firstmonday.org/issues/issue8_1/schweik/index.
html.

Stinchcombe, Arthur. 1985. “Contracts as Hierarchical Documents.” In Organization
Theory and Management, edited by Arthur Stinchcombe and Carol Heimer, 121–
71. Oslo: Norwegian University Press.

Sunstein, Cass. 2001. Republic.com. Princeton, NJ: Princeton University Press.

http://dx.doi.org/http://doi.acm.org/10.1145/337180.337209
http://www.firstmonday.dk/issues/issue3_3/raymond/
http://www.firstmonday.dk/issues/issue3_3/raymond/
http://www.firstmonday.org/issues/issue8_1/schweik/index.html
http://www.firstmonday.org/issues/issue8_1/schweik/index.html


20

Vixie, Paul. 1999. “SoftwareEngineering.” InOpen Sources: Voices from theOpen Source
Revolution, edited by Chris DiBona, Sam Ockman, and Mark Stone, 91–100. Se-
bastopol, CA: O’Reilly.

Wershler-Henry, Darren. 2002. Free as in Speech and Beer: Open Source, Peer-to-Peer
and the Economics of the Online Revolution. New York: Prentice Hall.

Williams, Sam. 2002. Free as in Freedom: Richard Stallman’s Crusade for Free Software.
Sebastopol, CA: O’Reilly.

Zipf,G.K. 1949.HumanBehavior and the Principle of Least Effort.Reading,MA:Addison-
Wesley.


	existing theory and research
	data and methods
	results
	discussion
	References

